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Abstract —Overall stress and strain rates for crystalline materials with an “internal structure™ are
considered. It has been shown that these measures are related to some kinematical constraints which
govern the evolution of the internal structure such as development of stip or shear bands within

grains and on grain boundaries, growth of voids or microcracks. The overall steess and strain rates
provide a framework for a micromechanically based constitutive modehng.

I, INTRODUCTION

The objective of the paper is to focus on a micromechanically based constitutive description
for crystalline materials. The approach is based on Taylor's averaging theorem (Taylor,
1938) tn the form proposed by Bishop and Hill (1951), and subsequently generalized by
Hill (1972). The theorem provides a suitable tool for studying incremental constitutive
relations including the evolution of the internal structure tor crystalline materials, Based
on the methodology, Hill and Rice (1972) have concluded that “what is commonly called
‘plastic” deformation is not generally the resultant of the slip alone™. Subsequently, Asaro
and Rice (1977) specified certain Schmid stress rates depending on the prediction of lattice
distortion. PFurthermore, Asaro (1983}, Nemat-Nasser (1983), and Nemat-Nasser and
Iwakuma (1985) have utilized this framework in constructing incremental relations for
crystalline materials.

In this paper, the averaging theorem is adopted in a modified form (Zubclewicz, 1989)
in which overall stress rates and plastic velocity gradients replace the traditionally used
pairs of stress, strains or stress, velocity gradients. The weight of the constitutive modceling
is transferred to the lower microscopic level of material. The matrix is assumed to be linear
clastic, plastic sliding is considered in a power-law form, and microcracking, hardening and
recovery parameters are incorporated into the evolution of the internal structure of the
muaterial.

2. TRANSITION FROM MICRO- TO MACROLEVEL

The current internal structure, if representative for erystalline materials, must involve
a sufficient number of ship systems, grain boundarics, and other microstructural features.
The elastic gradient of deformation F* and the Cauchy stress ¢ are assumed to be smeared
uniformly over the elastic matrix ; they do not differ from grain to grain at the characteristic
volume d¥. Inelastic behavior, such as sliding, void growth, microcracking, is referred to
the active discontinuity planes, which are defined by the current local orthogonal systems
(n*.s*, m*) and by the fraction arcas 657, The unit vectors n® and s indicate normal and slip
directions, the unit lateral vector m* supplements the local coordinate system, and together
they all satisfy the identity equation

l=n'n"+s's"+m'm". (1)

The overall properties of the material are referred to a characteristic volume, which is a
representative constant volume 34,

An evolution of the internal structure is effected by a rotation of the local systems
(n*, s*, m")
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At the current configuration of the internal structure the coordinate systems should remain
orthogonal with unit vectors: this characterization tmplies the additional conditions :

et =0
§’s* =10
m-m’ =0 (3a)
(M°n* +s's"+m'm*)" = 0. (3b)

When making use of the geometrical conditions (3). the components €7, which are relative
to-the basis (n*, s, m"), can be given in terms of the three independent functions (7. 0% and
‘:l
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The functions are specified by decomposing them into an clastic and plastic portion as
J v
Gh=n"@* 8T+
J
G=ntrof-m’
4 S TR I -
Ch=m' "@*- s (35)

in which the viscous -plastic rotation {% oceurs at the planes (n*,s%), and @* is the clastic
spin. Furthermore, by this means the change of the fraction area 38, which in an average
sense corresponds to microcracking, void growth, and an clastic distortion, is taken into
account. Then

08" = (§*/n*) 68™ (6)
and the function n* is specified as
nt=(pdie*m (7)

where, ptand p* are the initial and the current densities of the elastic matrix and are sclected
to cach other as pd = (det F*)p*. Functions nj are proposcd in a muluplicative form
Ny = Np N qr. where gp, ny, and gy are the damage, hardening and recovery functions,
respectively.

The transition rule from the micro- to macrolevel is based on the virtual work principle
in the form

A2
¢ (L—LM) SV = ¥ (s7-g 0 35} (8)

1=}

o

where o is the overall stress smeared over the characteristic volume 84 of the material.
The overall kinematically admissible plastic velocity gradient 1 = L. — L* is given as
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L= 5{; PICLRPAAY ©)
x= i
and is the summation of the plastic sliding from all the "N active slip planes. The term
(*08%/0+") represents the usually known nondimensional sliding. The micro-macro tran-
sition rule (8) is placed at the current state of the internal structure of the material. It can
be transformed into any other reference state. hence the rate of the shear force (s** o n* §S™)
and the rate of plastic sliding 7* may vary with the change of the reference frame, but the
product. the overall plastic dissipation (™ : L”) remains constant.

The evolution equations (2-7). when substituted into the virtual work principle (8),

become

¥ .z
" LM =3 o {s’ . [a‘—w*o+o’w‘+tr (L*)o+ '-Iga:l'n’
=1

2 "()

—n* o a5 g 's‘)}‘,‘1 SOV, (10)

Although the shear stress (87- o - n") can be considercd as the maximum shear stress at each
a-slip planc, the stress magnitude is not necessarily maximum at the plane (8%, 8%). The angle
of deviation J} front the direction of the maximum shear stress is characteristic for crystalline
materials and is given as

YWeleggen®

— L8 TFn
W= tan (R2FRR) = o e (11)
n*‘g'n -8 'ag-'s

The deviation dsappears (= 0) when o (n°n* —5%s%) = 0. Substituting (11) into (10)
gives

N -4y <x
o =Y tﬁ,[f*+ (~"9 + m—’)t"‘]: [(s*n*)y* 687 /6 V] (1)

o oo

where the stress rate £ is the Jaumann derivative of the KirchhofT stress corotational with
the clastic spin @*. For simplicity, the evolution functions {§ and nj are assumed to be
identical for the all z-active planes C = o, 1y = 5. 1 = prand they are projected onto the
average directions {n*) and {s*). Substituting for L” from (9) and using the micro-macro

transition rule (12)
20, #
6" = :g,{r’* + (-5" + »’f’)r*]. (13)
1 Ny

At the current configuration of the internal structure, the Cauchy and the Kirchhofl
stresses are identical. In general, the parameters ¢, and #, arc dependent on the size of the
characteristic volume § 17, and on the average directions {#*) and {s*), so that they deseribe
the nonlocal properties of the materials,

3. CONSTITUTIVE RELATIONS

In this approach constitutive assumptions are postulated based on the microscopic
level of material behavior. Moreover, the evolution of the internal structure, if correctly
predicted. will allow the description of material nonlincarities such as kinematical structural
hardening and softening due to rotation of the active planes, hardening-recovery and
damage of the material due to the change of the areas 5™ These nonlinearities are imposed
on the constitutive description for components of the structure of the material.
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First. one may presume that the matnx remains hinear elastic, so that the Kirchhoff
stress rate ©* and the rate of the clastic deformation D* = (L* +1.*") 2 obey the relation

t* =E:D* (14)

where E ts the elastic tensor. Furthermore, for materials such as lead-based alloys, the
plastic velocity gradient L 1s found as

v AY
7= S H U+ k)] (15)
x=1 fi=

I

where ;' and k,, are material functions. As has been suggested by Asaro and Rice (1977)

rate of shear stress is equal. @ = ¢'-t*-n" and the rate of normal stress 67 = o’ -¢* -0’

When ne coupling between the ship systems is assumed. the matrices H,,', k_, are diagonal.
b= J i b4 t=

and then

' |
"=y [(s' Wi +k, 0] (16)
iy

T

The plastic velocity gradient can be incorporated explicitly into the constitutive relation
(14). The plastic deformation rate D7 is found from

D" =M:t*+K:t* (17

where the Tourth order tensors Moand K are symmetric and equal

.
5 |

M=2 ‘ " (e
Yook

K=Y (¢ 18b
L. ey (18b)

where £ = (s"n' +n's) 2. When substituting (17) imto the relation (14), the constitutive
equations on the microlevel take the form

=k "+M) ' (D-K:t™) (19)

where the Jaumann rate of the Kirchhot'stress £* is given on the microlevel of the matenial,
The rute of the overall stress 6™ incorporates the elastic distortions of matrix as well as the
irreversible evolution of the internal structure of the erystalline material. The constitutive
relation (19) and the transition rule (13) make it possible to model the overall behavior of
the material, and the relations are found as

- »)J .
& =,,,,{(|«: '+.\n:|)+[<"“’+"“>l-(l': e M) 'K:]:r*} (20)
i

Hao

i which Iis the identity tensor. Note that at the current configuration of the internal
structure 6 = y,t*. The constitutive cquation (20) is composed of two terms. The first
represents non-viscous clasto-plastic behavior of the crystalline material at the current state
of the internal structure. The sccond term includes the viscous-plastic evolution of the
internal structure and the microviscosity of the material ttself. The microviscosity is prin-
cipally addressed to the growth of cavities on grain boundarics (Rice, 1981). Such cavitation
influences the local behavior at each active planc, while the global evolution of the average
fraction arcas 05* also includes the current hardening-recovery processes and microcracking
(fracturing).
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The evolution functions 7, and {,. the initial orientation of the x-active planes, and
the material parameters H,,. k.., E must be specified for each matenial separately.

4. CONCLUSIONS

Although the constitutive relations are derived in the framework of Taylor’s theory. it
is believed they capture the main physics of the processs of single crystals and of polycrystals
at an advanced stage of deformation. The derivations provide some important results.

First, even though the plastic hardening on the microlevel of the material contributes
to the overall behavior, the second order overall plastic dissipation (6 : L) given by eqn
(12) does not necessarily need to be positive and depends heavily on the evolution of the
internal structure described by the parameters 3, u*, n3. If such softening occurs it is a
microstructural induced softening. i.e. due to a dynamic recrystallization.

The micro-macro stress transition rule (13) shows that the rate of the overall stress ¢
varies from the Jaumann rate of the Kirchhoff stress £*, and at the current configuration
of the internal structure both the stresses correspond to each other through the relation
o™ = 1.t

The overall constitutive relations given in the final form (20) are composed of two
terms. The first represents the elasto-plastic properties of the material relative to the n, state
of hardening-recovery and damage, while the second term describes solely the material and
microstructural viscosity including the viscous damage of its internal structure.

Finally. the simplicity of the equations makes them very applicable, especially in
studying the advanced damage of crystalline materials during thermomechanical cycling.
The constitutive model has alrcady been used successfully by Zubelewicz et al. (1988) in
studying steady state of cycling of solder materials. The lifetime criteria for solder materials
appeared not only to be well curve fitted but also predictive. For strain controlled cycling
the formulae suggested that the life of the solders is significantly dependent on the stress
versus plastic strain range relation. Subsequently, this finding has been confirmed experi-
mentally,
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